19970210 099

SF 298 MASTER COPY

KEEP THIS COPY FOR REPRODUCTION PURPOSES

i -] luo%- ¢ 1of ced!
Dawig Highway. Sude 1204, Arlington. A 22202-4302,

Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188
Publc repoting burden for This lon of P nated 10 average 1 ROUT DIX 1aSD including the time for 0 Cli ching existing date
gaihenng 308 Maniaining e dale nesded, and leling 30d Ing the cotection of ion. Send regerding hia burden estimales of Sy ohe! aeDect o6 iy
p gt Ay ton Operanons and Repods. 1215 Jeflerson

s
ucing this burden, to Wachngton ¥ Services. Directorate fot 2
.'.‘.‘8 r a0 Buagaet, Peparion Reduction Propdt (0704-0188). Washington. DC 20503.

to the Ofiice ol Mansgement
1 AGENCY USE ONLY {Leave biank) 2. REPORT DATE

95 RN)

ORT TYPE AND DATES COVERED

%, TITLE AND SUBTITLE
Software maintenance and software Reuse

6. AUTHOR(S)

Y. B. Reddy and Dachelle Weems

5. FUNDING NUMBERS

@ﬁHHo‘f—?S'/'OiSO

S ERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)
Grambling State University

Department of Math and Computer Science
Grambling, LA 71245

8. PERFORMING ORGANIZATION
REPORT NUMBER

5 SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

S. Army Research Office

u.
P.O. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITCTUNG
AGENCY REPORT NUMBEH

ALo 34/577.37-MALS

11. SUPPLEMENTARY NOTES

an official Department of the Army position, policy or ccision, unless so des

The views, opinions and/or findings contained in this r?ort are those of the author(s) and should not be construed as
ignated by other documentation.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Maintenance is the process of modifying a software s
delivery to correct faults, impro
changed environment. Software mainten

categories: COTTective, adaptive,
necessary to disassemble an old system into components an

new system (re-engineering) with old and need ne
paper we discuss the reuse of software componen

system.

s 7

ystem or component after
ve performance or other attributes, or adopt to a
ance has been classified into three

and perfective. During the maintenance it may be
d resemble them into

w software components. In this
ts while reconstructing the

14. SUBJECT TERMS

Software reuse, Re-engineering, Software [maintenance, reconstructive maintenance

15. NUMBER if PAGES 14

16. PRICE CODE

17. SECURITY CLASSIFICATION { 18. SECURITY CLASSIFICATION } 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
ORA REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
Standard Form 298 (Rev. 2-83)

NSN 7540-01-280-6500
fnclosure 1

(1 i

DTIC QUALLTY IiNbriwyii) A

Prescribod by ANSt Std. 3G-1¥

Y. B. Reddy and Dachelle Weems, Grambling State University, Grambling, LA
71245 - Software maintenance and software Reuse:-

Maintenance is the process of modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or adopt to a
changed environment. Software maintenance has been classified into three
categories: corrective, adaptive, and perfective. During the maintenance it may be
necessary to disassemble an old system into components and resemble them into
new system (re-engineering) with old and need new software components. In this
paper we discuss the reuse of software components while reconstructing the
system.

Note: This research is supported by Advanced Distributed Simulation Research
Consortium and Office of Naval Research

70th Annual Meeting of the Louisiana Academy of Sciences
Nicholls State University, Thibodeaux, LA, February 1-2, 1996.

The software maintenance has been classified into three categories:
Corrective - Performed to correct a discovered problem in a SW system
Adaptive - When software system has to adapt a new operational environment

Perfective - Make an existing software system perform better

Software systems are constructed from scratch. Many times a system will be constructed
from reusable constants rather than constructed from scratch. for example:
a set of new software requirements are often initiated by new product ideas that
come directly from existing products.
Such constructions of new software systems are common in embedded software
environment. They are constructed using existing set of requirements, design and
implementation. This distinct type of software development can neither fitinto a
traditional software development framework, nor can it he classified by the known
maintenance categories.

Since the reconstruction is not same as develop a system from scratch, the maintenance
depends with new software requirements, design, and implementation from existing
systems.

The properties of perfective and adaptive maintenance are closely related and useful but
the constructive maintenance is different in many ways. We discuss this point in this

paper.

Reconstructive maintenance

The reconstructive maintenance is defined as the maintenance performed to accommodate
some dramatic changes in both software requirements and hardware environment in
existing systems. This kind of maintenance is quite common in the embedded software
industries where new products are frequently introduced. The new products may be

e previously tested products in another system

e newly designed and implemented

¢ modified old products as required by new system requirements

In the case of modified old products, we may need to preserve certain functionalities.

Adaptive maintenance deals with maintenance performed to preserve the same functional
requirements, whereas reconstructive maintenance deals with changes which include
operational, functional, and environmental. The reconstructive maintenancé has to
consider reusing other software components when constructing a new one which does not
exist in adaptive maintenance.

Reverse engineering deals with understanding of existing system and design the system to
meet the new goals. The reconstructive maintenance moves one step further., that is to
use reusable components and construct the system to meet new operational environment,
hardware, software facilities.

Reconstructive maintenance do not correct any bug in the software and it does not perfect
the existing system. These two characteristics are different from reverse engineering.

Reconstructive maintenance is to adapt new HW environment (not new development)
Reconstructive maintenance leads to a new system (it does not adapt old system)

The reconstructive maintenance disassembles the existing software into functionally
independent modules which might be reused in a new system.
Reconstructive maintenance requires new modules in addition to the reused ones.

The reconstructive maintenance engineer keeps in mind the following points:
e understand new software requirements and old system
e separation of modules from old system and possible reuse in new system
e The construction of new modules in addition to reused ones

12 by

We now discuss this problem in three important steps:
1. Understanding the application domain
2. Disassembling the existing system
3. Construction of new system

Understanding the application domain:

Software engineer must have sufficient amount of knowledge of application domain (That
is software engineer must be knowledgeable in application domain).

If software engineer has insufficient knowledge one should gain knowledge through class
room or independent study.

Disassembling the existing system:
After acquiring the domain knowledge, decompose the system into functional modules.
Form the reconstructive module set with appropriate requirements

identify reusable components from existing system, and other reusable components.

Construction of new system:

Reconstructive system may be done in spiral model or with object-oriented concepts.
Analyze possible reuse of all component.

Use incremental building of new system

Test the new system

Example:

In this example we discuss constructive maintenance of a neural network model. We will
discuss here the backpropagation model.

Backpropagation is a widely used neural network model during recent years for most of
the pattern recognition problems [5]. Multilayer Backpropagation paradigm is a feedforward
neural network having more than one hidden layer. In the present problem, the program
written for backpropagation in C-language is selected to reverse engineering case study [6].
In the present research, the neural network program is used to identify a fault component in a
hierarchically connected sensor output using the two gates “and” and “or” [7]. The ‘and’
gate takes the inputs and outputs the minimum value. The ‘or’ gate takes the inputs and
outputs the maximum value. The syntax of the diagrams are shown in Figure 2. The network
with one hidden layer with six inputs and seven outputs is given in Figure 1. The experiment
was conducted with two hidden layers and projected test outputs. The main idea of
conducting an experiment is to cover most of the lines of code and branches with test input
values. Test coverage reports are also generated to find the behavior of the program. It is
clear that the program [6] is well written but it misleads the user while executing the program
particularly when calling the functions ‘dread’ and ‘dwrite’ in ‘output_generation’ (user needs
to remember the previous data file name without extension after the period). The two
modules adds the extensions as: dread adds _v to data file and (b) wtread adds _w to the data
file to separate these from others in the directory. The program can be used to train various
data files and generate outputs for any trained pattern. The execution of the program and the
necessary modifications are discussed below. The program never keeps track of previous
weights if a user wants to train with more than one input file or further trains the system with
the same data again if the system does not reach the minimum required error. The design
extraction using Ensemble documentation is shown in Figure 3. Each time the program
executes as if it was started for the first time (weights are initialized each time). With little
modifications the program can be further trained for more than one data file at different times
so that we can save previous trained time. The design modifications with added functions are
shown in Figurc3 (with dotted lines) and metric reports in Appendix A

References

L.

W N

wn oA

10.

11.

12.

Chikofsky, E. J. and J. H. Cross III; Reverse engineering and design recovery:
A taxonomy, IEEE software, Jan. 1990, p 13 - 17.

CASE Tools for Reverse Engineering. CASE outlook, Vol. 2, no. 2, 1988, p1-15.
T.A.Corbi; Program understanding: Challenge for the 1990s

IBM Systems Journal, Vol. 28, No.. 2, 1989, p 294-306.

Oman, P; Maintenance Tools, IEEE software, May 1990, p 21-23.
Rumelhart, D.E., Hinton, G.E., and Williams, R.J.

Learning internal representations by error propagation

Parallel Distributed processing, Vol. I, p 318-364, MIT press, 1987.

You-Han Pao; Adaptive Pattern Recognition and Neural Networks
Addition-Wesley Publishing company, Inc. (1989)

Piotr Gmytrasiewicz, Jere A. Hassberger, and John C. Lee

Fault Tree Based Diagnostics Using Fuzzy Logic; IEEE Trans. On Pattern Analysis
and Machine Intelligence; Vol. 12, No. 11, Nov. 1990, p 1115-1119.

Ted J. Biggerstaff; Design recovery for maintenance and reuse,

IEEE Computer, July 1989, p 36-49.

Cadre Technologies Inc.;

222 Richmond Street, Providence, RI 02903; Ph - 1-800-548-7645.

Robert S. Arnold (editor)

Software Re-engineering

IEEE Computer Society Press (1993)

Walter, Richard C., and Elliot Chikofsy

Reverse Engineering progress Along Many Dimensions

CACM No.5, Vol. 37, May 1994. pp 22-24

Clapp, Judith

Designing Software for Maintainability

Computer Design, September 1981. pp 197-204.

Re-engineering to an Object-Oriented architecture

Object-oriented Development

16

I5

I4

I3

11

Neural Network model for 6 inputs and 7 outputs

Figure 1

A
/N

O/\
A /\

O

Figure 2: Hierarchical Connection of sensors using ‘and’ , ‘or’ gates

' » usersession

——> setup

}——» initwt —— random
———» wtwrite

—— leamning—% — dwrite

o introspective
" rumelhart

L /init

main ~——3 — gyead

forward

- outputgeneration™ | \
= wtread

Figure 3: Design extraction using Ensemble program
(--> shows the design modification)

Function summary Report

Ensemble Report:
Metrics

This report contains metrics information about function in the model.

Model="bj1_user’

Average cyclometric complexity =

Average data complexity =

Number of total lines =

Number of lines executed =

Percent lines executed =

Number of total branches =
Number of branches executed =
Percent braaches executed =
WARNING: Metrics that could not be calculated for a function show up

nnl
6.13

6.30

396
316

79.80%

151
114

75.50%

mun2
6.0
6.3
390
347
88.97
147
127

86.39%

with ** for their metric value. For data complexity, check to make sure

the functiow is part of your model. For coverage metrics, check to make sure

the function is part of your coverage set. For branch coverage,
this could mean there were no branches in the function.

file

bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c
bj.c

Farction Summary Report

function

dread

dwrite
forward

init

initwt
introspective
leaming
main
output_generation 10
random
rumelhart
set_up
user_session
wiread
wtwrite

ybrl

ybr2

cyclo

mmwwgulmqwa«wma\o\hg
—

g
&

OMMNQH“\!NO\WMG\O\A

n3

g

MHO\M&NSH!—\]AO\WMO\O\A
f=.)
(=

run3
5.47
591
405
362
89.38
149
123
82.55%

Modified Code

output_generation()

{

int i,j,m,nsample;
char ans[10];
char dfile[20];

/* If task is already in the memory, data files for task do not need to be

read in. But, if it is a new task, data files should be read in to reconstruct the net */
printf("\nGeneration of outputs for a new pattern");
printf("™\n\t Present task name is %s", task_name);
printf("\n\t Work on a different task? ");
printf("™\n\t Answer yes orno :");
scanf("%s", ans); .
if ((ans[0]=="y") Il (ans[0]=="Y"))
{

printf("\n\t Type the task name : ");

scanf("%s", task_name);

dread(task_name);

init();

wtread(task_name);
}

/* input data for output generation are created */
printf("\nEnter file name for patterns to be processed: ");
scanf("%s",dfile);
if ((fp1=fopen(dfile,"r")) == NULL)

{

perror("Cannot open dfile");

exit(0);
}
printf("\nEnter number of patterns for processing: "),
scanf("%d", &nsample);
for (i=0; i<nsample; i++)

for (m=0; m<ninattr;m++)

fscanf(fpl," %f" ,&input[i][m]);

/* output generation calculation starts */

for (i=0; i<nsample; i++)
{

forward(i);

for (m=0; m<noutattr; m++)

printf("\n sample %d output %d = %f",i,m,*(outptr[nhlayer+1]+m));
printf("\n");

}
printf("\nOutputs have been generated ");
if((i=fclose(fp1)) !=0)

printf("\nFile cannot be closed %d".i);

Appendix E
ybrl()
{

printf("\nIf you did not train the system and you want to use pre-trained
system\n");
printf(" enter the data file name used previously for training without
extension\n");
printf("\nif you just train the system and use, please enter the same name\n");
printf("\nIf you do not follow the instructions program terminates or you get
bad results\n");
printf("\n\tType the task name:");
scanf(" %s", task_name);
dread(task_name);
init();
wtread(task_name);
}
r* */
ybr2()
{
printf("\nTo further train the system with another data file with same\n");
printf(" number of inputs, outputs then enter the data file name\n");
printf(" \nenter the name of the data file:");
scanf(" %s", task_name);
printf("\nEnter total number of input samples in this data file:");
scanf(" %d", &ninput);
printf("\nMax number of iterations?: ");
scanf (" %d", &cnt_num);
printf("\nexecution starts....");

int result;
if ln ==0) { user_session(); set_up(); init(); } else ybr2();
do {
initwt();
result = rumelhart(0,ninput);
} while (result == RESTRT);
if (result == FEXIT) {
printf("™n Max number of iterations reached,");
printf("\n but failed to decrease system");
printf("\n error sufficiently");
}
dwrite(task_name);
wtwrite(task_name);

}

/* main body of output generation */
output_generation()
{
int i,j,m,nsample;
char ans[10];
char dfile[20];

/* If task is already in the memory, data files for task do not need to be read in.
But, if it is a new task, data files should be read in to reconstruct the net ~ */
printf("\nGeneration of outputs for a new pattern");
printf('"\n\t Present task name is %s", task_name);
printf("\n\t Work on a different task? “);
printf("\n\t Answer yes orno : ");

scanf("%s", ans);

*if ((ans[0]=="y") || (ans[0]=="Y")) ybrl(;

/

{
printf("\n\t Type the task name : ");
scanf("gs", task_name);
dread (task_name) ;
init();
wtread (task _name) ;

}

*/

/* input data for output generation are created */
printf("\nEnter test data file name for patterns to be processed: ");
scanf("%s" dfile);
if ((fpl=fopen(dfile,"t")) == NULL)

{
perror("Cannot open dfile");
exit(0);
}
printf("\nEnter number of patterns for processing: ");
scanf("%d", &nsample);
for (i=0; i<nsample; i++)
for (m=0; m<ninattr;m++)
fscanf(fpl,” %f" &input[i}{m});

/* output generation calculation starts */

for (i=0; i<nsample; i++)
{
forward(i);
for (m=0; m<noutattr; m++)
printf("™\n sample %d output %d = %f".i,m,*(outptr[nhlayer+1]+m));
printf("\n");
}
printf("\nOutputs have been generated ");
if((i=fclose(fpl)) != 0)
printf("\nFile cannot be closed %d",i);

/************************* MAIN ***************************/
main()
{

char select[20], cont[10];

char yb[5];

StGCy(taSk_name, "*********");
printf(" you want to use prelearned system or train first time: enter p or f: ");
scanf(" %s",yb);
if (yb[0]=="f") {In =0; printf(‘“\nselect learning\n”’);

else {In = 1; printf(“\nselect output generation \n”); }

do {
printf("\n** Select L(earning) or O(utput generation) **\n");
do {
scanf ("%s",select);
switch(select{0]) {
casu 'o"
case 'O"
output_generation ();
break;
case 1"
case L
learning();
break;
default:
printf("\nanswer learning or output generation ");
break;
}
} while ((select{0]!='0") && (select[0]!="0")
&& (select[0]!=T") && (select[0]!="L"));
printf("\nDo you want to continue? “);
scanf("%s",cont); In +=1;
} while ((cont[0] =="y") Il (cont[0] =="Y"));

printf("\nlt is all finished. ");
printf("™\n Good bye ");
}

10

